
 
 李臻,男,博士,教授,博士生导师,91自拍论坛
特聘教授,现任智能科学与技术系主任。
 招收软件工程学博、电子信息专博、计算机科学与技术学硕、计算机技术专硕,
 主要研究方向为:人工智能与生物信息学。
  
 教育工作经历
 2003.09至2007.06 中国海洋大学,  获学士学位
 2007.09至2014.01 中国海洋大学,  获博士学位
 2010.09至2012.09 美国匹兹堡大学,联合培养博士
 2014.01至2020.10 中国海洋大学,  讲师/副教授
 2020.11至今   91自拍论坛
, 特聘教授
 主持项目
 国家自然科学基金-面上项目,基于图深度学习模型的药物靶点亲和活性预测,2024-2027
 青岛市关键技术攻关及产业化示范类项目,纺纱全流程智能控制管理系统关键技术研发与应用示范,2022-2024
 
 科研成果 
 [1] Niu, D., Xu, L., Pan, S., Xia, L., & Li, Z*. (2024). SRR-DDI: A drug–drug interaction prediction model with substructure refined representation learning based on self-attention mechanism. Knowledge-Based Systems, 285, 111337.
 [2] Niu, D., Zhang, L., Zhang, B., Zhang, Q., & Li, Z*. (2024). DAS-DDI: A dual-view framework with drug association and drug structure for drug-drug interaction prediction. Journal of Biomedical Informatics, 104672
 [3] Zhang, L., Niu, D., Zhang, B., Zhang, Q., & Li, Z*. (2024). FSRM-DDIE: few-shot learning methods based on relation metrics for the prediction of drug-drug interaction events. Applied Intelligence, 54(23), 12081-12094.
 [4] Zhang, B., Niu, D., Zhang, L., Zhang, Q., & Li, Z*. (2024). MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction. BMC bioinformatics, 25(1), 275.
 [5] Zhang, L., Niu, D., Zhang, B., Zhang, Q., & Li, Z*. (2024). Property-guided few-shot learning for molecular property prediction with dual-view encoder and relation graph learning network. IEEE Journal of Biomedical and Health Informatics.
 [6] Xia, L., Xu, L., Pan, S., Niu, D., Zhang, B., & Li, Z*. (2023). Drug-target binding affinity prediction using message passing neural network and self supervised learning. BMC genomics, 24(1), 557
 [7] Pan, S., Xia, L., Xu, L., & Li, Z*. (2023). SubMDTA: drug target affinity prediction based on substructure extraction and multi-scale features. BMC bioinformatics, 24(1), 334.
 [8]  Li, Z,Jiang, M., Wang, S., & Zhang, S. (2022). Deep learning methods for molecular representation and property prediction. Drug Discovery Today, 27(12), 103373.
 [9] Wang, S., Song, T., Zhang, S., Jiang, M., Wei, Z., & Li, Z*. (2022). Molecular substructure tree generative model for de novo drug design. Briefings in bioinformatics, 23(2), bbab592.
 [10] 山东省科技进步一等奖"面向领域的智能计算理论方法与产业技术应用"(第四位)
  
  
 联系方式
 Email: [email protected]